
An Optimal Symmetric Secret Distribution of Star Networks1

Bruhadeshwar Bezawada Sandeep S. Kulkarni

Department of Computer Science Department of Computer Science

International Institute of and Engineering

Information Technology Michigan State University

Hyderabad, India 500032 East Lansing MI 48824, USA

Abstract

In this paper, we present a lower bound on secret distribution in star network. Exam-
ples of star communication network exist in various systems including sensor networks
where there is one base station and several sensors that need to communicate with it.
While the previous result had shown the possibility of performing secret distribution in a
star network using 2 log n secrets, the lower bound for this problem was unknown. With
this motivation, in this paper, we derive a tight bound for the number of secrets required
for secret distribution in a star network. We show that as n, the number of satellite
nodes in the star network, tends to ∞, it suffices to maintain log n + 1/2 log log n + 1
secrets at the center node. However, log n + 1/2 log log n secrets do not. Even in the
absence of the constraint of n → ∞, we argue that these bounds are reasonably tight,
i.e., there are several examples for finite values of n where dlog n+1/2 log log ne secrets
do not suffice although dlog n + 1/2 log log n + 1e secrets suffice for virtually all cases
of practical interest. We also show that our protocol could provide a tradeoff between
internal and external attacks and to reduce the number of secrets in acyclic, planar and
fully connected bipartite graphs.
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1 Introduction

Consider the problem of secure communication in an undirected graph G(V, E), where V is
the set of nodes and E is the set of edges. An edge of the form (v1, v2), v1, v2 ∈ V , specifies
that node v1 needs to communicate securely with node v2. Note that whether the nodes
need to communicate with each other is orthogonal to whether they can communicate with
each other directly. In particular, the former is based on application semantics whereas the
latter is based on communication characteristic. For example, in a sensor network, a sensor
may need to communicate securely with a base station. This communication may itself be
assisted by other sensors in terms of routing. However, the intermediate sensors can neither
learn the contents of the message nor can generate messages on behalf of the sender.

Our problem in this paper is motivated by the above scenario where the communication
graph is a star, i.e., it consists of one center node and several satellite nodes. The center node
uses unicast or broadcast to communicate with the satellite nodes and the satellite nodes use
unicast to communicate with the center node. No two satellite nodes need to communicate
with each other. All the communication between the center node and the satellite nodes
needs to be authenticated. By authentication we mean that, any impersonation attempt
by the satellite nodes or outside nodes is prevented.

Our approach for authentication is as follows: Each node (center and satellite) has a set of
secrets. Whenever a node sends a message, it adds authentication codes based on some of
the secrets it has. Upon reception, the receiver verifies some of the authentication codes
that it receives. It is required that message must be authentic when the receiver verifies the
required authentication codes.

With this motivation, we focus on secret distribution that will provide authentication for
the communication in star networks. In our work, we focus on the secrets that should
be given to each node; it does not address how these secrets are distributed. In case of
sensor networks, these secrets can be distributed at deployment time. Or, they could be
communicated using other approaches such as the use of public keys etc.

We first precisely define the problem of communication in star network. In particular,
we identify constraints on the broadcast communication from the center node to satellite
nodes. Essentially, these constraints require that the cost of the broadcast communication
should be proportional to the secrets that the center node maintains. Then, we present our
approach for secret distribution and its optimality.

The main results in this paper are as follows:

• We show that as the number of satellite nodes in the star network, say n, tends to ∞

– There exists a protocol that maintains log n + 1/2 log log n + 1 secrets at the
center node.
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– Under the assumption that the number of secrets maintained by the satellite
nodes is identical, we show that there does not exist a protocol that maintains
log n + 1/2 log log n secrets at the center node.

• In the absence of the constraint of n →∞, we show that

– There exists a protocol (shown constructively) that maintains dlog n+1/2 log log n+
1e secrets at the center node for virtually all cases of practical interest.

– Under the assumption that the number of secrets maintained by the satel-
lite nodes is identical, there does not exist a protocol that maintains dlog n +
1/2 log log ne secrets at the center node for many cases of practical interest.

• We show that our protocol can also be extended to acyclic, limited cycle and fully
connected bipartite networks.

• We show that our protocol provides tradeoff between internal attackers and external
attackers.

Organization of the paper. The rest of the paper is organized as follows. In section
2, we precisely define the problem of secret distribution. In section 3, we provide our
algorithm for secret distribution in a star network and show its optimality. In Section 4,
we show how our solution can be extended to acyclic, planar and fully connected bipartite
graphs. In Section 5, we show how our solution provides a tradeoff between internal and
external attacks. Finally, in section 6, we discuss related work and conclude in Section 7.

2 Constraints on Communication in Star Network and Prob-

lem Statement

In this section, we identify the constraints on the broadcast communication from the center
node to the satellite nodes. To motivate these constraints, consider the following solution:

In this solution, the center node maintains a secret x. Each satellite node has an ID ranging
from 1 . . . n. The secret associated with satellite node j is f(x, j). Clearly, f(x, j) could be
used for unicast communication to/from j and the center node. (For example, f(x, j) could
be used to generate a message digest that the receiver can verify. Since f(x, j) is known only
to the center node and satellite node j, only they can generate the corresponding message
digest.) However, for broadcast, the center node must provide authentication code using
f(x, j), 1 ≤ j ≤ n. Each satellite node can verify the authentication code by generating the
code locally, using its secret f(x, j), and comparing the generated code with the code sent
by the center node.

Clearly, in the above solution, the cost of generating authentication codes, which is O(n),
for broadcast is very high. Motivated by this undesirable solution, we impose the following
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constraint on the problem of secret distribution in star network: We require that the center
node maintain a set of secrets, say of size k. Each satellite node maintains a unique subset
of these secrets. Whenever the center node sends a broadcast message, it provides authen-
tication codes using some/all of those secrets. For example, if the center node broadcasts
the message to a subset of the satellite nodes, say, i1, . . . , it, then the center node generates
authentication codes using the secrets that are in the union of all the subsets of secrets
held by these satellite nodes. Since the authentication codes are generated using the secrets
held by target satellite nodes, those nodes can verify the authenticity of the message. For
broadcast messages sent to all the satellite nodes, the center uses the same technique and
hence, generates authentication codes using all k secrets.

Note that the earlier solution also fits in this category if we consider that the secrets main-
tained at the center node are f(x, j), 1 ≤ j ≤ n. However, this representation clearly
captures that the number of secrets maintained at the center node is n and each satellite
node maintains one secret from these secrets.

Based on the above discussion, the problem statement for secret distribution in a star
network is as follows: The center node maintains a set of secrets, say of size k. Each satellite
node maintains a subset, say of size l, of this set of secrets. To broadcast a message, the
center node provides authentication codes based on all k secrets. The satellite node verifies
the l authentication codes that it can verify. The problem is to reduce the size of the set
of secrets at the center node while allowing it to send unicast, multicast, and broadcast
messages in an authenticated manner.2 Note that, it is required that the satellite node
must be able to derive authenticity of a message by verifying the required authentication
codes.

3 Authenticated Communication in Star Network and its

Optimality

As discussed in the previous section, in our protocol, the center node maintains a set of k

secrets. Each satellite node receives a unique subset of size l from this set. Note that, by
construction, no two satellite nodes have identical subsets of secrets. Similar to [1], we use
this secret distribution protocol to achieve secure and authenticated communication. We
term this protocol instance as p(k, l) 3. Using p(k, l), authentication can be achieved in the
communication as follows:

2The problem of reducing the secrets at the satellite node is not considered, since this number can be
reduced to 1 using the solution considered above.

3Technically, p(k, l) is a family of protocols. However, for brevity of presentation, we denote p(k, l) as a
protocol. However, we note that all the results in this paper attributed to protocol p(k, l) are valid for any
member of the p(k, l) protocol family
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• To authenticate a message m broadcasted by the center node to the satellite node, the
center node generates authentication codes with each of the k secrets. Each authenti-
cation code consists of the message digest md of the message computed using a secret
held by the center. The center appends the k authentication codes thus generated
to the message and broadcasts the resulting message. Now, when a satellite node
receives this message, it uses its subset of l secrets to compute l authentication codes.
The satellite node then verifies these authentication codes with the corresponding au-
thentication codes sent by the satellite node. Note that, each satellite node can verify
only those authentication codes for which it has the corresponding generating secret.

• To authenticate a unicast message m from the center to a particular satellite node,
the center node first computes an XOR of the subset of the keys that this satellite
node knows. Now, the center node uses the combined secret to compute the message
authentication code for this message. The center node appends this authentication
code to the message and unicasts the message to the satellite node.

• To authenticate a unicast message m from a satellite node to the center, the satellite
node uses the same approach used by the center node for authenticating unicast
messages.

In the remaining section, we consider the case where the number of satellite nodes, n,
tends to ∞: First, we show (cf. Theorem 4) that log n + log log n secrets suffice at the
center to handle n users. Then, we show (cf. Theorem 5) that log n + c log log n secrets
do not suffice if c < 1/2. Using the proofs of these results, we show (cf. Theorem 6) that
log n+1/2 log log n+1 secrets suffice to handle n nodes whereas log n+1/2 log log n do not.

Theorem 1. p(k, l) provides authentication for the communication in the star network.

Proof. The proof follows from the construction of p(k, l).

Theorem 2. Protocol p(k, l) can accommodate upto C(k, l) satellite nodes.

Proof. This follows directly, as this C(k, l) is the number of unique subsets of keys that
can be generated.

Corollary 3. For a given value of k, choosing l = k/2 maximizes the number of satellite
nodes that can be accommodated.

Theorem 4. As n →∞, protocol p(k, l), where k = log n+log log n and l = k/2, provides
authentication for the star network with n nodes.

Proof. To prove this, we show that, when k = log n + log log n and l = k/2, 4 the
number of unique subsets of secrets that are possible i.e., C(k, l) ≥ n. This implies that

4Since we are dealing with large values of n, for simplicity of presentation, we omit the floor/ceiling
operations required in computing log n, l, etc.
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each satellite node receives a different subset of secrets and hence, based on Theorems 1
and 2, p(k, l) can be used for authentication in star network.

We use Stirling’s approximation for factorials which states that, for large values of n, n! ≈
(n/e)n.

√
2πn. Now, C(k, l)= k!

(l)!(k−l)! . Since l = k/2, this values simplifies to: k!
(k/2)!(k/2)! .

Now, using Stirling’s approximation, we have

C(k, k/2) = k!
(k/2)!(k/2)!

≈ (k/e)k∗
√

2πk

((k/2e)k/2∗
√

2π(k/2))2

= 2k∗2√
2πk

{Now, letting k = (log n + log log n) }

= 2(log n+log log n)∗2√
2π(log n+log log n)

= n 2 log n√
2π(log n+log log n)

Now, as n → ∞, the multiple of n tends to ∞. Hence, as n → ∞, C(k, k/2) > n,
where k = log n + log log n. In other words, the number of subsets generated by choosing
k = log n+log log n and l = k/2 is greater than or equal to n. Thus, this secret distribution
ensures authentication in the star network.

When compared to the secret distribution for star network in [1] our secret distribution
requires lesser number of secrets. In [1], the center maintains 2 log n secrets and in our
secret distribution protocol the center only needs to maintain log n + O(log log n) secrets.
The number of secrets stored by the satellite nodes is reduced as well. In [1], each satellite
node maintain log n secrets and in our secret distribution protocol, each satellite node
maintains atmost (log n)/2 + O(log log n) secrets. This value represents the upper bound
for the number of secrets maintained by the satellite node. Moreover, the result from the
above theorem can be verified for most small values of n. In particular, we have verified
that dlog n + log log ne secrets suffice for 5 < n < 1000 nodes.

Next, we consider whether the number of secrets can be reduced further. It turns out that
not significant reduction can be achieved, as shown in the next theorem.

Theorem 5. As n → ∞, protocol p(k, l) where k = (log n + c log log n), where c < 1/2
and l = k/2 cannot provide authentication for the star network with n nodes.
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Proof. As before we evaluate C(k, l) using Stirling’s approximation and show that this
value is less than n. Based on Theorems 1 and 2, this result proves this theorem. From the
above proof,

C(k, k/2) ≈ 2k∗2√
2πk

{Now, letting k = log n + c log log n}

= 2(log n+c log log n)∗2√
2π(log n+c log log n)

= n 2∗2c log log n√
2π(log n+c log log n)

= n 2∗(2log log n)c√
2π(log n+c log log n)

= n 2∗(log n)c√
2π(log n+c log log n)

Note that, as n →∞, the multiple of n in the above formula tends to 0. Hence, as n →∞,
C(k, k/2) < n. .

Based on the above theorem, if c = 1/2 then the multiple of n is 2√
2π

. Since this number of
less than 1, log n+c log log n secrets do not suffice when c = 1/2. However, if the number of
secrets is (log n+1/2 log log n+1), then in the above formula, the multiple of n is 4√

2π
. Since

this number is greater than 1, (log n + 1/2 log log n + 1) secrets suffice for key distribution
in a star network as n →∞. Thus, we have

Theorem 6. As n → ∞, protocol p(k, l) where k = (log n + 1/2 log log n), and l = k/2
cannot provide authentication for the star network with n nodes. And, as n →∞, protocol
p(k, l) where k = (log n + 1/2 log log n + 1), and l = k/2 can provide authentication for the
star network with n nodes.

Once again, since the above theorem applies for the case where n →∞, the natural question
is about what happens for small values of n. Here, we note that we checked whether
dlog n+1/2 log log ne secrets suffice for n < 50000. For 2 ≤ n ≤ 1000, we found this number
to be insufficient for 510 values and for 1000 ≤ n ≤ 50000, we found that this number to be
insufficient for 20313 values. By contrast, if we consider dlog n + 1/2 log log n + 1e secrets
then this number suffices for the case where the number of nodes is less than 50000. As an
illustration, we refer the reader to Figure 1.
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Figure 1: Number of secrets stored by the center node

3.1 Optimality of Secret Distribution in Star Networks

Consider the problem of secret distribution in star network where the number of secrets
stored by the satellite nodes is equal. Thus, based on the constraints in Section 2, a solution
is of the form where, for some values of k and l, the center node maintains k secrets and
each satellite node maintains a subset of size l from that set. In other words, a solution
is of the form p(k, l) for some value of k and l. Now, based on Theorem 6, as n → ∞,
log n + 1/2 log log n + 1 is the minimum number of secrets that need to be maintained by
the center node.

We would like to note that while the reduction in the number of secrets is from 2 log n to
log n + O(log log n), this reduction is especially valuable when we consider the number of
nodes that can be supported with a given set of secrets at the center. For example, Figure 2
compares the number of nodes that can be supported with our scheme with that in [1]. If 10
secrets are available at the center then the scheme in [1] can support upto 32 satellite nodes
whereas our protocol can tolerate upto 252 satellite nodes. Or, if 20 secrets are available at
the center then the scheme in [1] can support upto 1024 satellite nodes whereas our protocol
can tolerate upto 184756 satellite nodes.
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Figure 2: Number of users supported by the center node

4 Extensions to Acyclic, Planar and Complete Bipartite Net-

works

In Section 3, we described our secret distribution protocol, p(k, l), for a star network. In
this section, we extend it for the cases where the communication graph is acyclic, planar,
or complete bipartite.

Acyclic Networks. Since an acyclic undirected graph consists of a set of trees, we
describe the secret distribution for a tree. The same algorithm can be applied for each tree
separately to obtain the secret distribution for acyclic graphs. Given a tree, we choose one
of the nodes in it as a root and consider the corresponding rooted version. In particular,
this allows us to define a parent of node in the tree and to define whether a node is a leaf.
Now, consider a non-leaf node and its children in this network. This sub-network is a star
graph where the non-leaf node is the center node and the children are satellite nodes. Now,
we apply the p(k, l) secret distribution with appropriate values of k and l for this star graph.
We repeat this process for each star graph obtained by considering a non-leaf node and its
children. The secrets assigned to a node in the tree are the same as the union of the secrets
assigned to it in any star graph considered in this fashion.

Now, in the star graph, the non-leaf node which is the center node gets log d + O(log log d)
secrets and each satellite node gets 1/2 log d + O(log log d) secrets, where d is the degree of
the center node. Furthermore, for any given non-leaf node, it is a center node in at most
one star graph considered above. Likewise, it is a satellite node in at most one star graph
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(where its parent is the center node) considered above. Thus, the number of secrets at any
node is at most 3/2 log d + O(log log d), which is less than that in [1] where 2 log d secrets
are maintained.

Planar Networks. The extension to planar network is similar to that in [1]. In particular,
in [1], a well-known result from graph theory (e.g., [2]) is used for extension to planar
graphs. The result in [2] states that any planar graph G can be decomposed into at most
three acyclic graphs, called factors. Each factor has the same nodes as the original graph
G and the degree of each factor is at most the degree of the original graph. Now, secrets
can be independently distributed to each factor to obtain the secret distribution of planar
network. By using our scheme for acyclic networks, it would be possible to reduce the
number of secrets used in planar networks as well.

Fully Connected Bipartite Graphs. A complete bipartite graph is a graph G(V,E)
such that its vertex set can be partitioned into two disjoint sets, V1 and V2, the edge set, E

is induced by these two vertex sets such that every vertex in V1 is connected to every other
vertex in V2. No edge exists between any of the vertices in V1 (respectively, V2). Examples
of such communication graph is one where the vertex set V1 contains servers and the vertex
set V2 contains clients. The communication is from servers to clients and vice-versa. No
server (respectively, client) needs to communicate with each other.

For this network, we employ the following secret distribution technique. We treat the
vertex set V1 as a single center node, say C, and the vertex set V2 as satellite nodes. As this
represents a star network with C as star node, we instantiate a p(k, l) secret distribution for
this network. Thus, in this distribution, the node C needs to store log |V2|+ O(log log |V2|)
secrets. Since C represents the vertex set V1, each of the nodes in V1 are given all these
secrets. We repeat this procedure by treating the vertex set V2 as the center node and the
vertex set V1 as the satellite nodes. This secret distribution would provide an additional
1/2 log |V1| + O(log log |V1|) secrets to each node in V1. Thus, the number of secrets given
to nodes in V1 is 3/2 log d + O(log log d), where d = max(|V1|, |V2|) is the maximum degree
of any node in the communication graph.

5 Tradeoff in Handling Internal and External Attacks

In this section, we show that our secret distribution protocol can provide a tradeoff be-
tween handling internal vs external attacks. An internal attack is launched by two or more
colluding satellite nodes that are currently part of the network. These satellite nodes com-
bine their secrets and try to compromise all the secrets of the center node. The goal of
an internal attack is to impersonate the center node and inject false information into the
network or tamper the messages sent by the center node. Note that, in the protocol in [1],
two specifically chosen users are sufficient to compromise all the center node secrets.
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An external attack is launched by an intruder who is not part of the network but is able
to listen on to the communication in the network. The goal of the external attacker is
to impersonate one of the nodes in the network, i.e., it wants to send a message (and the
corresponding authentication codes) to the center node and have it accepted as a genuine
message. (Note that we are not concerned with replay of genuine packets, as it can be
handled using standard techniques.)

To illustrate the tradeoff between internal and external attacks, consider two protocols
p(k, l), where l = k/3 or l = 2k/3. (For simplicity assume that k is a multiple of 3.) Since
C(k, k/3) = C(k, 2k/3), the number of nodes that can be handled in either protocols is
same. Now, consider the effect of these protocol instances on the two types of attacks.

• For p(k, k/3), the number of secrets held by a satellite node is small. In this case, at
least three internal attackers must collude to collect all the center secrets. By contrast,
for p(k, 2k/3), the number of secrets held by a satellite node is large. And, only two
internal attackers can collude to collect all the center secrets.

• For p(k, k/3), an external attacker only needs to generate k/3 valid authentication
codes whereas for p(k, 2k/3), an external attacker needs to generate 2k/3 valid au-
thentication codes. This issue needs to be considered especially if weak authentication
codes are used due to resource constraints, e.g., when only a small number of bytes
generated by a hash function are included.

The above discussion shows that our secret distribution protocol provides tradeoffs for
handling internal and external attacks. Although we have illustrated these tradeoffs with
p(k, k/3) and p(k, 2k/3), these tradeoffs can be generalized as p(k, k/c) and p(k, k(1− 1/c))
where c > 1. Depending on the nature of the attacks or the storage capabilities of the
satellite nodes, the value of c can be appropriately chosen to achieve the desired secret
distribution.

6 Related Work

Secure communication among a group of nodes in a communication network using symmetric
key mechanisms has been widely studied. In particular, it has been shown by [3, 4], that
the number of secrets stored by each node can be less than O(n) for a system of n nodes.
In [3, 4], the authors describe a secret distribution protocol which allow any two users to
communicate securely while storing only O(

√
n) secrets. These protocols, are designed for

the case where the communication graph is fully connected.

In [5], the authors improve upon this storage requirement and describe a secret distribution
protocol that requires each user to store O(log2 n) secrets. In their work, the authors show
the existence of O(log n) secret distribution protocol for star network like scenarios for a
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communication network without actually constructing the protocol. Reducing the storage
to logarithmic bounds has benefits in resource constrained networks such as sensor networks.
In a sensor network each node has limited memory for storing secrets. Examples of such
resource constrained networks include sensor networks [6, 7], ad-hoc networks [8–10] and
mobile networks [11,12].

In [1], the authors describe a logarithmic secret distribution protocol for a star network
where the storage is logarithmic for both the center, which stores 2 log n secrets and the
satellite nodes, which store log n secrets. They extend their results to achieve logarithmic
secret distribution for several classes of communication networks including, star networks,
acyclic networks, cycle-limited networks, planar networks and dense bipartite networks.

7 Conclusion

In this paper, we presented a lower bound on secret distribution in star network. We
showed that this lower bound is indeed achievable and tight. In particular, we showed
that as n → ∞, log n + 1/2 log log n + 1 secrets at the center node suffice. However,
log n + 1/2 log log n secrets do not. Even in the absence of the constraint of n → ∞, we
find that these bounds are reasonably tight, i.e., there are several examples for finite values
of n where dlog n + 1/2 log log ne secrets do not suffice although dlog n + 1/2 log log n + 1e
secrets suffice for virtually all cases of practical interest. We also showed that our protocol
could provide a tradeoff between internal and external attacks.

The result in this paper reduces the number of secrets to almost half compared to that in [1]
where 2 log n secrets are used at the center node and log n secrets are used at the satellite
nodes. By contrast, our protocol uses 1/2 log n + O(log log n) secrets at satellite nodes.

Using this protocol, we showed that it is possible to reduce the secrets maintained in an
acyclic, planar and fully bipartite communication graph. However, the optimality of the
number of secrets in these protocols is still an open question. Also, in [1], authors have
presented how their approach can be used in limited-cycle graphs and arbitrary bipartite
graphs. However, since this extension is based on a specific numbering scheme, it cannot
be directly applied with protocol p(k, l). One of the future work in this area is to identify
lower bounds for secrets in such graphs.
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